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Introduction[1]

•Three techniques are used independently or in tandem to improve 
receiver signal quality

•Equalization compensates for ISI created by multipath with time 
dispersive channels (W>BC)

Linear equalization, nonlinear equalization
•Diversity also compensates for fading channel impairments, and is 

usually implemented by using two or more receiving antennas
Spatial diversity, antenna polarization diversity, frequency 
diversity, time diversity
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Introduction[1]

•The former counters the effects of time dispersion (ISI), while the 
latter reduces the depth and duration of the fades experienced 
by a receiver in a flat fading (narrowband) channel 

• Channel Coding improves mobile communication link 
performance by adding redundant data bits in the transmitted 
message 

•Channel coding is used by the Rx to detect or correct some (or all) 
of the errors introduced by the channel (Post detection 
technique)

Block code and convolutional code
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Equalization Techniques

• The term equalization can be used to describe any signal
processing operation that minimizes ISI [2]

• Two operation modes for an adaptive equalizer: training 
and tracking 

•Three factors affect the time spanning over which an 
equalizer converges: equalizer algorithm, equalizer 
structure and time rate of change of the multipath radio 
channel

•TDMA wireless systems are particularly well suited for 
equalizers
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Equalization Techniques

• Equalizer is usually implemented at baseband or at IF in a 
receiver (see Fig. 1)

f*(t): complex conjugate of f(t)
nb(t): baseband noise at the input of the equalizer
heq(t): impulse response of the equalizer
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Equalization Techniques

Fig. 1
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Equalization Technologies

• If the channel is frequency selective, the equalizer enhances the 
frequency components with small amplitudes and attenuates the strong 
frequencies in the received frequency response

• For a time-varying channel, an adaptive equalizer is needed to track the 
channel variations  
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Basic Structure of Adaptive Equalizer

•Transversal filter with N delay elements, N+1 taps, and N+1 tunable  
complex weights 

•These weights are updated continuously by an adaptive algorithm
•The adaptive algorithm is controlled by the error signal ek



NCCU 
Wireless Comm. Lab.7-9

Equalization Techniques

•Classical equalization theory : using training sequence to minimize 
the cost function

E[e(k) e*(k)]
•Recent techniques for adaptive algorithm : blind algorithms

Constant Modulus Algorithm (CMA, used for constant envelope
modulation) [3]
Spectral Coherence Restoral Algorithm (SCORE, exploits spectral 
redundancy or cyclostationarity in the Tx signal) [4]
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Solutions for Optimum Weights of Figure 2 (一)

•Error signal
where

•Mean square error
•Expected MSE

where
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Solutions for Optimum Weights of Figure 2 (二)

•Optimum weight vector 

•Minimum mean square error (MMSE)

•Minimizing the MSE tends to reduce the bit error rate 

pR 1ˆ −=ω

[ ]−= 2
min Eξ κχ pRp 1T −

[ ]−= 2E κχ ω̂Τp
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Equalization Techniques

•Two general categories - linear and nonlinear 
equalization (see Fig. 3)
•In Fig. 1, if d(t) is not the feedback path to adapt the equalizer, 

the equalization is linear
•In Fig. 1, if d(t) is fed back to change the subsequent outputs 
of the equalizer, the equalization is nonlinear 
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Equalization Techniques

Fig.3 Classification of equalizers
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Equalizer Techniques

•Linear transversal equalizer (LTE, made up of tapped delay lines
as shown in Fig.4)

Fig.4 Basic linear transversal equalizer structure

•Finite impulse response (FIR) filter (see Fig.5)
•Infinite impulse response (IIR) filter (see Fig.5)
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Equalizer Techniques

Fig.5 Tapped delay line filter with both feedforward and feedback taps
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Structure of a Linear Transversal Equalizer [5]
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Structure of a Lattice Equalizer [6-7]

Fig.7 The structure of a Lattice Equalizer 
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Characteristics of Lattice Filter

•Advantages
Numerical stability
Faster convergence
Unique structure allows the dynamic assignment of the most effective 
length

•Disadvantages
The structure is more complicated
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Nonlinear Equalization

•Used in applications where the channel distrotion is too severe
•Three effective methods [6]

Decision Feedback Equalization (DFE)
Maximum Likelihood Symbol Detection
Maximum Likelihood Sequence Estimator (MLSE)
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Nonlinear Equalization--DFE

•Basic idea : once an information symbol has been detected and decided
upon, the ISI that it induces on future symbols can be estimated and 
substracted out before detection of subsequent symbols

•Can be realized in either the direct transversal form (see Fig.8) or as a 
lattice filter
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Nonlinear Equalizer-DFE

Fig.8 Decision feedback equalizer (DFE) 



NCCU 
Wireless Comm. Lab.7-22

Nonlinear Equalization--DFE 

•Predictive DFE (proposed by Belfiore and Park, [8])
•Consists of an FFF and an FBF, the latter is called a noise predictor 
( see Fig.9 )

•Predictive DFE performs as well as conventional DFE as the limit
in the number of taps in FFF and the FBF approach infinity

•The FBF in predictive DFE can also be realized as a lattice structure [9]. 
The RLS algorithm can be used to yield fast convergence
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Nonlinear Equalizer-DFE

Fig.9 Predictive decision feedback equalizer
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Nonlinear Equalization--MLSE 

•MLSE tests all possible data sequences (rather than decoding each 
received symbol by itself ), and chooses the data sequence with the
maximum probability as the output

•Usually has a large computational requirement
•First proposed by Forney [10] using a basic MLSE estimator 
structure and implementing it with the Viterbi algorithm

•The block diagram of MLSE receiver (see Fig.10 ) 
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Nonlinear Equalizer-MLSE

•MLSE requires knowledge of the channel characteristics in order 
to compute the matrics for making decisions

•MLSE also requires knowledge of the statistical distribution of 
the noise corrupting the signal

Fig.10 The structure of a maximum likelihood sequence equalizer(MLSE) with 
an adaptive matched filter
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Algorithm for Adaptive Equalization

•Excellent references [6, 11--12]
•Performance measures for an algorithm

Rate of convergence
Misadjustment
Computational complexity
Numerical properties

•Factors dominate the choice of an equalization structure and its algorithm
The cost of computing platform
The power budget
The radio propagation characteristics
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Algorithm for Adaptive Equalization

•The speed of the mobile unit determines the channel fading rate and the 
Dopper spread, which is related to the coherent time of the channel
directly

•The choice of algorithm, and its corresponding rate of convergence, 
depends on the channel data rate and coherent time

•The number of taps used in the equalizer design depends on the maximum 
expected time delay spread of the channel

•The circuit complexity and processing time increases with the number of 
taps and delay elements
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Algorithm for Adaptive Equalization

•Three classic equalizer algorithms : zero forcing (ZF), least mean squares 
(LMS), and recursive least squares (RLS) algorithms

•Summary of algorithms (see Table 1)
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Summary of algorithms

Table 1 Comparison of various algorithms for adaptive equalization
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Diversity Techniques

•Requires no training overhead
•Can provides significant link improvement with little added cost
•Diversity decisions are made by the Rx, and are unknown to the Tx
•Diversity concept

If one radio path undergoes a deep fade, another independent path may 
have a strong signal
By having more than one path to select from, both the instantaneous
and average SNRs at the receiver may be improved, often by as much
as 20 dB to 30 dB
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Diversity Techniques

•Microscopic diversity and Macroscopic diversity
The former is used for small-scale fading while the latter for large-scale 
fading
Antenna diversity (or space diversity)

•Performance for M branch selection diversity (see Fig.11)
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Diversity techniques

Fig. 11 Graph of probability distributions of SNR=γ threshold for M branch 
selection diversity. The term Γ represents the mean SNR on each branch
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Diversity Techniques

• Performance for Maximal Ratio Combining Diversity [13]
(see Fig. 12)
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Diversity Techniques

Fig. 12 Generalized block diagram for space diversity
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Diversity Techniques

• Space diversity [14]

Selection diversity

Feedback diversity

Maximal ration combining

Equal gain diversity
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Diversity Techniques

• Selection diversity (see Fig. 13)

The receiver branch having the highest instantaneous SNR 

is connected to the demodulator

The antenna signals themselves could be sampled and the 

best one sent to a single demodulation

Fig. 13 Maximal ratio combiner
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Diversity Techniques

• Feedback or scanning diversity (see Fig. 14)
The signal, the best of M signals, is received until it falls 
below threshold and the scanning process is again initiated

Fig. 14 Basic form for scanning diversity
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Diversity Techniques

• Maximal ratio combining [15] (see Fig. 12)

The signals from all of the M branches are weighted 

according to their signal voltage to noise power ratios and 
then summed

• Equal gain diversity

The branch weights are all set to unity but the signals from 

each are co-phased to provide equal gain combining 
diversity
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Diversity Techniques

• Polarization diversity

Theoretical model for polarization diversity [16] (see Fig.15) 

the signal arrive at the base station 

the correlation coefficient can be written as
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Diversity Techniques

Fig. 15 Theoretical Model for base station polarization diversity based on [Koz85]
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Diversity Techniques

• Frequency diversity
Frequency diversity transmits information on more than one 

carrier frequency

Frequencies separated by more than the coherence bandwidth 

of the channel will not experience the same fads

• Time diversity

Time diversity repeatedly transmits information at time 

spacings that exceed the coherence time of the channel
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RAKE Receiver 

• RAKE Receiver [17]

Fig. 16 An M-branch (M-finger) RAKE receiver implementation. Each correlator detects a time shifted 
version of the original CDMA transmission, and each finger of the RAKE correlates to a portion of the 
signal which is delayed by at least one chip in time from the other finger.
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Interleaving

Fig. 17 Block interleaver where source bits are read into columns and out as n-bit rows
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